Synthesis of 4-C-methyl analogues of glucosylceramide

Michael Plewe a, Konrad Sandhoff b and Richard R. Schmidt a

(Received January 20th, 1992; accepted May 8th, 1992)

ABSTRACT

Benzyl 2,3,6-tri-O-benzyl-4-deoxy-4-C-methylene- α -D-xylo-hexopyranoside (3) was transformed with 3-chloroperoxybenzoic acid into the epoxides 4 and 5. Reductive opening of the epoxide moiety in 4 furnished benzyl 2,3,6-tri-O-benzyl-4-C-methyl- α -D-glucopyranoside (6); subsequent hydrogenolytic O-debenzylation, per-O-acetylation, selective removal of the anomeric O-acetyl group, and then treatment with trichloroacetonitrile in the presence of base afforded 2,3,4,6-tetra-O-acetyl-4-C-methyl-D-glucopyranosyl trichloroacetimidate (9). Reaction of 9 with the 3-O-benzoyl-azidosphingosines 10a,b in the presence of BF₃·OEt₂ gave (2S,3R,4E)-2-azido-3-benzoyloxy-1-(2,3,4,6-tetra-O-acetyl-4-C-methyl- β -D-glucopyranosyloxy)-4-octadecene (14a) and -4-dodecene (14b), respectively. Treatment of 14a,b with triphenylphosphine and the carboxylic acid anhydride in the presence of water and then with methanolic sodium methoxide gave the title compounds 16a,b.

INTRODUCTION

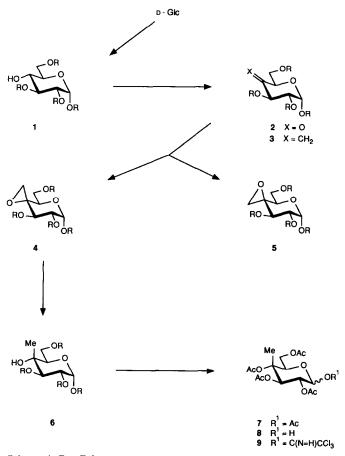
The biosynthesis of glycosphingolipids (GSLs) starts from ceramide as the substrate to which, with the help of activated sugars and glycosyl transferases as catalysts, the sugar residues are attached¹. Thus, with UDP-glucose and glucosyl transferase, glucosylceramide is generated; then, with UDP-galactose and galactosyl transferase, the O- β -(1-4)-linked lactosylceramide is obtained which is the basic constituent of various types of GSLs. Modifications of the glucosyl moiety in the 4-position should provide interesting target molecules for biological testing ^{2,3}. Therefore, we planned to introduce at C-4 of the glucosyl moiety a C-methyl group, leading to glucosylceramide analogues 16 as target molecules that should not be galactosylated at O-4 due to steric hindrance. However, as a substrate analogue, compound 16a could act as a competitive galactosyl transferase inhibitor. Synthesis of the truncated derivative 16b has been envisaged⁴⁻⁶ because

^a Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-7750 Konstanz (Germany)

^b Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Straße 1, D-5300 Bonn 1 (Germany)

Correspondence to: Professor Dr. R.R. Schmidt, Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-7750 Konstanz, Germany.

advantageous properties for such sphingosines and ceramides, respectively, have been observed in biological testing^{4,7}.


RESULTS AND DISCUSSION

The strategy selected for the synthesis of 4-C-methyl branched glucosylceramides 16 was based on the azidosphingosine glycosylation procedure for GSL synthesis introduced by us^{8,9}. To this end, the 4-C-methylglucosyl donor 9 and the 3-O-protected azidosphingosines 10a,b are required as essential building blocks.

For the synthesis of 9, the readily available O-benzyl-protected glucoside $1^{10,11}$ was transformed into the labile 4-ulose derivative 2, and subsequently by Wittig reaction into the 4-deoxy-4-C-methylene derivative 3, following known procedures¹⁰. Epoxidation of the alkene moiety in 3 with 3-chloroperoxybenzoic acid furnished the acid-sensitive epoxides 4 and 5 (overall yield from 1, 36%; 4:5-ratio, 1:2). Selective hydrogenolysis of the epoxide ring in 4 can be performed in ethyl acetate-methanol with palladium-on-CaCO₃ as catalyst, to give directly the desired 4-C-methylglucoside 6, the structure of which could be assigned by comparison with authentic material obtained via a different route¹². Reductive cleavage of the epoxide ring in 4 with LiAlH₄ as the reducing agent could also be successfully carried out, again providing 6 in high yield. Hydrogenolytic O-debenzylation of 6 with palladium-on-carbon as catalyst and subsequent O-acetylation with acetic anhydride in pyridine furnished the per-O-acetyl derivative 7 (1:1 anomeric mixture), which was selectively 1-O-deacetylated with hydrazinium acetate (method of Excoffier et al.¹³) to yield 8. Treatment of 8 with trichloroacetonitrile in the presence of K₂CO₃ as base afforded the trichloroacetimidate 9 in high yield (83%, $\alpha : \beta \sim 1:1)^{14}$.

For the regioselective coupling of 9 with the azidosphingosine, 3-O-protected derivatives are required^{8,9,15}. Successful reactions of various glycosyl donors with the 3-O-benzoyl derivative $10a-(E)^{8,15}$ encouraged us to synthesize also the truncated analogue 10b-(E). For this purpose, the truncated azidosphingosine 11b (obtained as a 7:1 E/Z-mixture)^{5,16} was treated with trityl chloride in pyridine–dichloromethane (1:1), affording selectively the 1-O-trityl derivatives 12b-(E,Z); 3-O-benzoylation with benzoyl chloride in pyridine–toluene (1:1) gave 13b-(E,Z), which could be separated by MPLC; detritylation of the E/Z-mixture with $BF_3 \cdot OEt_2$ in methanol¹⁷ afforded 10b as an E,Z-mixture which could be readily fractionated by flash chromatography, thus providing pure 10b-(E).

Glycosylation of acceptors 10a,b-(E) with donor 9 in the presence of $BF_3 \cdot OEt_2$ as catalyst furnished, by neighbouring-group participation 14 , the β -connected glycosides 14a and 14b, respectively. Azide group reduction in 14a and subsequent N-palmitoylation was performed as a one-pot reaction with triphenylphosphine and palmitic anhydride in the presence of water 18,19 , thus providing the O-acylprotected target molecule 15a; similarly, from 14b, triphenylphosphine, and dodecanoic anhydride, compound 15b was obtained. O-Deacylation of 15a,b was carried

Scheme 1. R = Bzl.

HO R =
$$C_{13}H_{27}$$

b R = $C_{7}H_{15}$

R¹O
$$C_7H_{15}$$
 C_7H_{15} C_7H_{15}

Scheme 2.

Scheme 3.

out with methanolic sodium methoxide (Zemplén conditions), thus affording the desired 4-C-methyl-glucosylceramides **16a,b**. The ¹H NMR data of the intermediates and of the final products are in accordance with the assigned structures.

EXPERIMENTAL

General methods.—Melting points are uncorrected. Optical rotations were determined with a Perkin–Elmer 241 MC polarimeter. 1 H NMR spectra were recorded for solutions in CDCl₃ (internal Me₄Si) with a Bruker WM 250 (or AC 250) Cryospec instrument. $R_{\rm F}$ values refer to TLC performed on Silica Gel 60 F₂₅₄ (Merck). Column chromatography was performed under normal pressure with silica gel (Merck, 70–230 mesh ASTM and 230–400 mesh ASTM for flash chromatography) and under elevated pressure with LiChroprep Si 60 (Merck, $15-25~\mu m$). The bp of the light petroleum was $35-60^{\circ}$.

Benzyl 2,3,6-tri-O-benzyl- α -D-xylo-hexopyranosid-4-ulose (2).—This compound was prepared as described in ref. 10. From $1^{10,11}$ (90 g, 0.166 mol) was obtained crude 2 (98 g), which was used directly without purification for the synthesis of compound 3.

Benzyl 2,3,6-tri-O-benzyl-4-deoxy-4-C-methylene- α -D-xylo-hexopyranoside (3).— This compound was prepared as described in ref. 10. From crude 2 (66 g) was obtained crude 3 (53 g) which was used without purification for the synthesis of 4 and 5.

Benzyl 4,4¹-anhydro-2,3,6-tri-O-benzyl-4-C-hydroxymethyl- α -D-glucopyranoside (4) and benzyl 4,4¹-anhydro-2,3,6-tri-O-benzyl-4-C-hydroxymethyl- α -D-galactopyranoside (5).—To a solution of crude 3 (25 g) in dry CH₂Cl₂ (250 mL) was added dry 3-chloroperoxybenzoic acid (90%; 8.8 g, 0.046 mol), with stirring at 0°, in

several portions. After 16 h at room temperature, the mixture was extracted with satd aq NaHCO₃ (50 mL), 1 M sodium bisulfite (50 mL), and satd aq NaHCO₃ (50 mL). The organic solution was dried (MgSO₄) and concentrated under reduced pressure. Short-column chromatography (8:2 light petroleum–EtOAc) gave a syrup which was dissolved in EtOAc (50 mL). Light petroleum was added until crystallization of 5 began. The product was filtered off and the filtrate was concentrated under reduced pressure. The residual syrup, which consisted of a mixture of 4 and 5, was purified by flash chromatography (8:2 light petroleum–EtOAc).

Compound 4 (3.36 g, 12% from 1) was a colourless syrup; $[\alpha]_D^{22} + 85^\circ$ (c 1, CHCl₃); R_F 0.27 (9:1 light petroleum–EtOAc). ¹H NMR (250 MHz, CDCl₃): δ 2.81, 3.14 (2 d, 2 H, J_{gem} 5.2 Hz, H-4¹a,4¹b), 3.43 (m, 2 H, H-6a,6b), 3.58 (dd, 1 H, $J_{1,2}$ 3.6, $J_{2,3}$ 9.8 Hz, H-2), 4.23 (d, 1 H, $J_{2,3}$ 9.8 Hz, H-3), 4.35 (dd, 1 H, $J_{5,6a} = J_{5,6b} = 3.6$ Hz, H-5), 4.52–4.82 (m, 8 H, 4 C H_2 Ph), 4.93 (d, 1 H, $J_{1,2}$ 3.6 Hz, H-1), 7.28–7.45 (m, 20 H, 4 Ph). *Anal.* Calcd for $C_{35}H_{36}O_6$: C, 76.06; H, 6.57. Found: C, 76.01; H, 6.65.

Compound **5** (6.86 g, 24% from 1) formed colourless needles, mp 90° (from EtOH), $[\alpha]_D^{22}$ +51° (c 1, CHCl₃); R_F 0.21 (9:1 light petroleum–EtOAc). ¹H NMR (250 MHz, CDCl₃): δ 2.85, 2.98 (2 d, 2 H, $J_{\rm gem}$ 5.2 Hz, H-4¹a,4¹b), 3.31 (dd, 1 H, $J_{5,6a}$ 4.6, $J_{\rm gem}$ 9.8 Hz, H-6a), 3.43 (dd, 1 H, $J_{5,6b}$ 7.3, $J_{\rm gem}$ 9.8 Hz, H-6b), 3.78 (dd, 1 H, $J_{1,2}$ 3.7, $J_{2,3}$ 9.8 Hz, H-2), 4.25 (d, 1 H, $J_{2,3}$ 9.8 Hz, H-3), 4.31 (dd, 1 H, $J_{5,6a}$ 4.6, $J_{5,6b}$ 7.3 Hz, H-5), 4.43–4.77 (m, 7 H, C H_2 Ph), 4.91 (d, 1 H, $J_{1,2}$ 3.7 Hz, H-1), 4.92 (d, 1 H, $J_{\rm gem}$ 10.3, C H_2 Ph), 7.25–7.44 (m, 20 H, 4 Ph).

Anal. Calcd for C₃₅H₃₆O₆: C, 76.06; H, 6.57. Found: C, 76.05; H, 6.56.

Benzyl 2,3,6-tri-O-benzyl-4-C-methyl- α -D-glucopyranoside (6).—Procedure (a). To a solution of 4 (190 mg, 0.34 mmol) in EtOAc (3 mL) and MeOH (3 mL) was added palladium-on-calcium carbonate (70 mg). The mixture was shaken under $\rm H_2$ for 16 h. Removal of the catalyst, concentration under reduced pressure, and flash chromatography (8:2 light petroleum-EtOAc) of the residue yielded 6 (150 mg, 80%) as colourless crystals.

Procedure (b). To a suspension of lithium aluminium hydride (1 g) in dry tetrahydrofuran (150 mL) was added dropwise a solution of 4 (6.98 g, 12.6 mmol) in dry tetrahydrofuran (20 mL). After stirring for 4 h at room temperature, the mixture was cooled in an ice-bath, and MeOH was added dropwise until evolution of H_2 ceased. Then, 10% H_2SO_4 was added until the precipitate of aluminium hydroxide was fully dissolved. The organic solution was separated and the aqueous solution was extracted with diethyl ether (3 × 50 mL). The combined organic solutions were washed with brine (70 mL), dried (MgSO₄), and concentrated under reduced pressure. Flash chromatography (9:1 light petroleum–EtOAc) yielded 6 (5.46 g, 78%) as colourless crystals, mp 69°, [α]_D²² + 100° (c 1.9, EtOAc); R_F 0.60 (2:1 light petroleum–EtOAc).

Compound 6 was obtained independently as a by-product of the hydroboration of 3^{12} . The reported physical data are in accordance with those found here.

1,2,3,4,6-Penta-O-acetyl-4-C-methyl-D-glucopyranose (7).—To a solution of 6 (5.46 g, 9.82 mmol) in EtOAc (20 mL) and MeOH (20 mL) was added palladiumon-carbon (10%, 200 mg). After hydrogenolysis for 4 h, the mixture was filtered and concentrated under reduced pressure. A mixture of the residue, dry pyridine (15 mL), dry acetic anhydride (15 mL), and 4-(dimethylamino)pyridine (100 mg) was stirred for 16 h at room temperature and then concentrated at 10^{-2} Torr. Flash chromatography (6:4 light petroleum-EtOAc) of the residue yielded 7 (3.20 g, 81%; α : β = 1:1) as a colourless syrup. ¹H NMR (250 MHz, CDCl₃) of the anomeric mixture: 7α , δ 1.44 (s, 3 H, CH₃), 1.98, 2.01, 2.08, 2.09, 2.20 (5 s, 15 H, 5 OAc), 4.07 (dd, 1 H, $J_{5,6a}$ 8.0, J_{gem} 12.1 Hz, H-6a), 4.30 (dd, 1 H, $J_{5,6b}$ 2.3, J_{gem} 12.1 Hz, H-6b), 5.02 (dd, 1 H, $J_{1,2}$ 4.0, $J_{2,3}$ 10.4 Hz, H-2), 5.16 (dd, 1 H, $J_{5,6b}$ 2.3, $J_{5.68}$ 8.0 Hz, H-5), 6.08 (d, 1 H, $J_{2.3}$ 10.4 Hz, H-3), 6.28 (d, 1 H, $J_{1.2}$ 4.0 Hz, H-1); 7β , δ 1.44 (s, 3 H, CH₃), 1.97, 2.03, 2.07, 2.08, 2.11 (5 s, 15 H, 5 OAc), 4.09 (dd, 1 H, $J_{5.6a}$ 8.0, J_{gem} 12.1 Hz, H-6a), 4.30 (dd, 1 H, $J_{5.6b}$ 2.3, J_{gem} 12.1 Hz, H-6b), 4.90 (dd, 1 H, $J_{5,6b}$ 2.3, $J_{5,6a}$ 8.0 Hz, H-5), 5.09 (dd, 1 H, $J_{1,2}$ 8.1, $J_{2,3}$ 9.8 Hz, H-2), 5.76 (d, 1 H, $J_{1,2}$ 8.1 Hz, H-1), 5.98 (d, 1 H, $J_{2,3}$ 9.8 Hz, H-3). Anal. Calcd for C₁₇H₂₄O₁₁: C, 50.50; H, 5.98. Found: C, 50.62; H, 6.30.

2,3,4,6-Tetra-O-acetyl-4-C-methyl-p-glucopyranose (8).—A solution of 7 (2.52 g, 6.21 mmol) and hydrazinium acetate (630 mg, 6.30 mmol) in dry HCONMe₂ (15 mL) was stirred for 4 h at 40°. After evaporation at 10^{-2} Torr, the residue was dissolved in CH₂Cl₂ (50 mL) and washed with brine (50 mL). The aqueous solution was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic solutions were dried (MgSO₄), and concentrated under reduced pressure. Flash chromatography (1:1 light petroleum–EtOAc) yielded **8** (1.92 g, 85%, α: β = 1:1) as a colourless syrup, R_F 0.37 (1:1 light petroleum–EtOAc). ¹H NMR (250 MHz, CDCl₃) of the anomeric mixture: δ 1.43 (s, 3 H, CH₃), 1.97–2.09 (m, 12 H, 8 OAc), 4.06, 4.10 (2 dd, 1 H, $J_{5,6a}$ 8.1, $J_{6a,6b}$ 12.0 Hz, 2 H-6a), 4.29, 4.34 (2 dd, 1 H, $J_{5,6b}$ 2.4, $J_{6a,6b}$ 12.0 Hz, 2 H-6b), 4.81–4.87 (m, 2 H, H-1 β , H-2 α , H-2 β , H-5 α), 5.22 (dd, 0.5 H, $J_{5,6b}$ 2.4, $J_{5,6a}$ 8.1 Hz, H-5 β), 5.44 (d, 0.5 H, $J_{1,2}$ 3.9 Hz, H-1 α), 5.94 (d, 0.5 H, $J_{2,3}$ 9.4 Hz, H-3 β), 6.09 (d, 0.5 H, $J_{2,3}$ 10.4 Hz, H-3 α). Anal. Calcd for C₁₅H₂₂O₁₀: C, 49.72; H, 6.12. Found: C, 49.73; H, 6.33.

2,3,4,6-Tetra-O-acetyl-4-C-methyl-p-glucopyranosyl trichloroacetimidate (9).—To a solution of **8** (2.11 g, 5.80 mmol) and trichloroacetonitrile (1.10 mL, 1.58 g, 10.9 mmol) in dry CH₂Cl₂ (15 mL) was added K₂CO₃ (500 mg). The mixture was stirred for 16 h at room temperature, then filtered through Celite and concentrated under reduced pressure. Flash chromatography (6:4 light petroleum–EtOAc) yielded **9** (2.43 g, 83%; $\alpha:\beta=1:1$) as a colourless foam; R_F 0.30 (6:4 light petroleum–EtOAc). ¹H NMR (250 MHz, CDCl₃) of the anomeric mixture: **9** α : δ 1.45 (s, 3 H, CH₃), 2.01, 2.02, 2.10 (3 s, 9 H, 3 OAc), 4.08–4.17 (m, 1 H, H-6a), 4.29–4.37 (m, 1 H, H-6b), 5.04 (dd, 1 H, $J_{1,2}$ 4.1, $J_{2,3}$ 10.3 Hz, H-2), 5.25–5.28 (m, 1 H, H-5), 6.18 (d, 1 H, $J_{2,3}$ 10.3 Hz, H-3), 6.51 (d, 1 H, $J_{1,2}$ 4.1 Hz, H-1), 8.66 (s, 1 H, NH); **9** β : δ 1.47 (s, 3 H, CH₃), 2.00, 2.08, 2.09 (3 s, 9 H, 3 OAc), 4.08–4.17 (m, 1 H, H-6a), 4.29–4.37 (m, 1 H, H-6b), 4.98 (dd, 1 H, $J_{5.6b}$ 2.6, $J_{5.6a}$

7.8 Hz, H-5), 5.25 (dd, 1 H, $J_{1,2}$ 8.4, $J_{2,3}$ 9.8 Hz, H-2), 5.88 (d, 1 H, $J_{1,2}$ 8.4 Hz, H-1), 6.00 (d, 1 H, $J_{2,3}$ 9.8 Hz, H-3), 8.73 (s, 1 H, NH). *Anal.* Calcd for $C_{17}H_{22}Cl_3NO_{10}$: C, 40.30; H, 4.38; N, 2.77. Found: C, 40.39; H, 4.47; N, 2.96.

(2S,3R)-2-Azido-1-triphenylmethyloxy-4-dodecen-3-ol (12b).—To a solution of **11b** (8.6 g, 35.6 mmol; E: Z = 7:1)^{5,16} in dry pyridine (25 mL) and dry CH₂Cl₂ (25 mL) was added triphenylmethyl chloride (19.6 g, 70.3 mmol) with stirring. After 16 h at room temperature, the mixture was concentrated at reduced pressure and dissolved in diethyl ether (200 mL). The organic solution was extracted with satd aq NaHCO₃ (2 × 50 mL), dried (MgSO₄), and concentrated under reduced pressure. Flash chromatography (95:5 light petroleum-EtOAc) gave 12b (17.1 g, quant; E: Z = 7:1) as a colourless oil which still contained triphenylmethanol; it was used without further purification in the next step. For analytical purposes, a small amount was purified by MPLC (95:5 light petroleum-EtOAc); separation of the E and Z isomers was not successful; R_F 0.62 (9:1 light petroleum-EtOAc). ¹H NMR (250 MHz, CDCl₃) of **12b-**E: δ 0.88 (t, 1 H, J 6.6 Hz, CH₃), 1.16–1.54 (m, 10 H, 5 CH₂), 1.90-2.06 (m, 3 H, 2 CH=CH-CH₂, OH), 3.30 (d, 2 H, J 5.5 Hz, CH_2O), 3.52 (dt, 1 H, J = J' = 5.5 Hz, CHN), 4.15-4.20 (m, 1 H, CH-OH), 5.31 (dd, 1 H, J 7.2, 15.4 Hz, CH=CH-CH₂), 6.15 (dt, 1 H, J 6.7, 15.4 Hz, CH=CH-CH₂), 7.19-7.45 (m, 15 H, 3 Ph). Anal. (for 12b) Calcd for C₃₁H₃₇N₃O₂: C, 76.99; H, 7.71; N, 8.69. Found: C, 76.84; H, 7.75; N, 8.50.

(2S,3R,4E)-2-Azido-3-benzoyloxy-1-triphenylmethoxy-4-dodecene [13b-(E)] and (2S,3R,4Z)-2-azido-3-benzoyloxy-1-triphenylmethoxy-4-dodecene [13b-(Z)].—To a solution of 12b (8.4 g, 17.4 mmol; E:Z=7:1) in dry toluene (20 mL) and dry pyridine (20 mL) was added benzoyl chloride (4.0 mL, 4.8 g, 34.5 mmol). After stirring for 24 h at room temperature, the mixture was concentrated under reduced pressure and dissolved in diethyl ether (100 mL). The organic solution was extracted with satd aq NaHCO₃ (3 × 50 mL), and the aqueous solutions were combined and extracted with diethyl ether (3 × 50 mL). The combined organic extracts were dried (MgSO₄) and concentrated under reduced pressure. Flash chromatography (95:5 light petroleum–EtOAc) yielded 13b (6.8 g, 68% from 11b; E:Z=7:1) as a colourless oil, which was used as the E/Z-mixture in the next step. Separation of the E/Z isomers was possible by MPLC (30:1 light petroleum–EtOAc).

13b-(E): R_F 0.49 (95:5 light petroleum–EtOAc), $[\alpha]_D^{22}$ – 20° (c 1, CHCl₃). ¹H NMR (250 MHz, CDCl₃): δ 0.86 (t, 3 H, J 6.8 Hz, CH₃), 1.22–1.25 (m, 10 H, 5 CH₂), 1.93–1.98 (m, 2 H, CH=CH–C H_2), 3.20 (dd, 1 H, J 5.2, 9.8 Hz, CH₂O), 3.29 (dd, 1 H, J 6.7, 9.8 Hz, CH₂O), 3.86 (ddd, 1 H, J 4.8, 5.2, 6.7 Hz, CHN), 5.42 (dd, 1 H, J 7.9, 15.4 Hz, CH=CH–CH₂), 5.63 (dd, 1 H, J 4.8, 7.9 Hz, CH=OBz), 5.81 (dt, 1 H, J 6.7, 15.4 Hz, CH=CH–CH₂), 7.18–7.48 (m, 17 H, Ph), 7.53–7.59 (m, 1 H, Ph), 7.93–7.97 (m, 2 H, Ph).

13b-(Z): $R_{\rm F}$ 0.52 (95:5 light petroleum–EtOAc); $[\alpha]_{\rm D}^{22}$ +5° (c 1, CHCl₃). ¹H NMR (250 MHz, CDCl₃): δ 0.87 (t, 3 H, J 6.8 Hz, CH₃), 1.24 (m, 10 H, 5 CH₂), 2.05–2.19 (m, 2 H, CH=CH–C H_2), 3.20 (dd, 1 H, J 4.7, 9.8 Hz, CH₂O), 3.29 (dd, 1

H, J 7.1, 9.8 Hz, CH₂O), 3.84 (ddd, 1 H, J 4.7, 4.8, 7.1 Hz, CHN), 5.39 (dd, 1 H, J 9.4, 10.9 Hz, CH=CH-CH₂), 5.67 (dt, 1 H, J 7.5, 10.9 Hz, CH=CH-CH₂), 5.91 (dd, 1 H, J 4.8, 9.4 Hz, CH-OBz), 7.17-7.46 (m, 17 H, Ph), 7.51-7.58 (m, 1 H, Ph), 7.91-7.95 (m, 2 H, Ph). *Anal.* [for **13b** (E/Z-mixture)] Calcd for C₃₈H₄₁N₃O₃: C, 77.65; H, 7.03; N, 7.15. Found: C, 77.62; H, 7.11; N, 7.00.

(2S,3R,4E)-2-Azido-3-benzoyloxy-4-dodecen-1-ol [10b-(E)] and (2S,3R,4Z)-2-azido-3-benzoyloxy-4-dodecen-1-ol [10b-(Z)].—To a solution of 13b (8.16 g, 10.6 mmol; E:Z=7:1) in dry toluene (30 mL) and dry MeOH (20 mL) was added dropwise diethyl ether-boron trifluoride (2 mL). After 2 h at room temperature, satd aq NaHCO₃ (50 mL) was added, the organic layer was separated, and the aqueous solution was extracted with diethyl ether (3 × 50 mL). The combined organic solutions were dried (MgSO₄) and concentrated under reduced pressure. Fractionation of the residue by flash chromatography (9:1 light petroleum-EtOAc) yielded 10b-(E) (2.16 g, 59%) and 10b-(Z) (0.30 g, 8%) as colourless oils.

10b-(*E*): $R_{\rm F}$ 0.10 (9:1 light petroleum–EtOAc); $[\alpha]_{\rm D}^{22}$ -59° (*c* 1, CHCl₃). ¹H NMR (250 MHz, CDCl₃): δ 0.86 (t, 3 H, *J* 6.8 Hz, CH₃), 1.25–1.41 (m, 10 H, 5 CH₂), 2.04–2.12 (m, 3 H, CH=CH–CH₂, OH), 3.63 (dd, 1 H, *J* 7.0, 11.5 Hz, CH₂O), 3.75 (dd, 1 H, *J* 4.0, 11.5 Hz, CH₂O), 3.77–3.85 (m, 1 H, CHN), 5.55–5.65 (m, 2 H, C*H*=CH–CH₂, C*H*–OBz), 5.90–6.01 (m, 1 H, CH=C*H*–CH₂), 7.42–7.48 (m, 2 H, Ph), 7.55–7.61 (m, 1 H, Ph), 8.04–8.08 (m, 2 H, Ph).

10b-(*Z*): $R_{\rm F}$ 0.15 (9:1 light petroleum–EtOAc), $[\alpha]_{\rm D}^{22}$ +7° (*c* 2, CHCl₃). ¹H NMR (250 MHz, CDCl₃): δ 0.86 (t, 3 H, *J* 6.6 Hz, CH₃), 1.24–1.39 (m, 10 H, 5 CH₂), 2.19–2.28 (m, 3 H, CH=CH–CH₂, OH), 3.63 (dd, 1 H, *J* 7.0, 11.6 Hz, CH₂O), 3.75 (dd, 1 H, *J* 3.9, 11.6 Hz, CH₂O), 3.83 (ddd, 1 H, *J* 3.9, 5.3, 7.0 Hz, CHN), 5.57 (ddd, *J* 1.3, 9.3, 10.9 Hz, C*H*=CH–CH₂), 5.81 (dt, 1 H, *J* 7.5, 10.9 Hz, CH=C*H*–CH₂), 5.97 (ddd, 1 H, *J* 0.7, 5.3, 9.3 Hz, C*H*–OBz), 7.42–7.48 (m, 2 H, Ph), 7.54–7.61 (m, 1 H, Ph), 8.04–8.07 (m, 2 H, Ph). *Anal.* Calcd for C₁₉H₂₇N₃O₃: C, 66.06; H, 7.88; N, 12.16. Found: C, 66.05; H, 7.69; N, 12.00.

(2S, 3R, 4E)-2-Azido-3-benzoyloxy-1-(2,3,4,6-tetra-O-acetyl-4-C-methyl-β-D-glu-copyranosyloxy)-4-octadecene (14a). —To a solution of $10a^{8,15}$ (850 mg, 1.97 mmol) in dry n-hexane (6 mL) under an N₂ atmosphere was added dropwise diethyl ether-boron trifluoride (0.6 mL of a 0.2 M solution in CH₂Cl₂) and a solution of 9 (1.30 g, 2.56 mmol) in dry CH₂Cl₂ (3 mL). The mixture was stirred for 5 h at room temperature [TLC control with HPTLC Kieselgel 60 F₂₅₄ (Merck), light petroleum-diethyl ether (1:1), R_F of orthoester = 0.50]. Then light petroleum was added and the mixture was filtered. The filtrate was washed with satd aq NaHCO₃ (20 mL), dried (MgSO₄), and concentrated under reduced pressure. Flash chromatography (8:2 light petroleum-EtOAc) yielded 14a (1.10 g, 72%) as a colourless syrup, $[\alpha]_{D}^{12} - 33^{\circ}$ (c 1, CHCl₃), which contained traces of orthoester; this material was used without further purification in the next step; $R_F = 0.45$ (HPTLC Kieselgel 60 F₂₅₄ (Merck), 9:1 light petroleum-diethyl ether). ¹H NMR (250 MHz, CDCl₃): δ 0.88 (t, 3 H, J 6.8 Hz, CH₃), 1.24–1.33 (m, 22 H, 11 CH₂), 1.47 (s, 3 H, CH₃), 1.96–2.08 (m, 2 H, CH=CH-CH₂), 1.96, 2.00, 2.07, 2.08 (4 s, 12 H, 4 OAc),

3.62 (dd, 1 H, J 8.8, 12.0 Hz, CH $_2$ O), 3.87–3.94 (m, 2 H, CH $_2$ O, CHN), 4.00 (dd, 1 H, $J_{5,6a}$ 7.9, $J_{\rm gem}$ 12.0 Hz, H-6a), 4.25 (dd, 1 H, $J_{5,6b}$ 2.6, $J_{\rm gem}$ 12.0 Hz, H-6b), 4.57 (d, 1 H, $J_{1,2}$ 8.1 Hz, H-1), 4.79 (dd, 1 H, $J_{5,6b}$ 2.6, $J_{5,6a}$ 7.9 Hz, H-5), 5.00 (dd, 1 H, $J_{1,2}$ 8.1, $J_{2,3}$ 9.8 Hz, H-2), 5.54 (ddt, 1 H, J < 0.7, 8.0, 14.7 Hz, CH=CH $_2$ CH $_2$ CH $_3$ CH $_4$ CH $_4$ CH $_4$ CH $_4$ CH $_4$ CH $_5$ CH $_4$ CH $_4$ CH $_5$ CH $_4$ CH $_5$ CH $_4$ CH $_5$ CH $_5$ CH $_4$ CH $_5$

(2S,3R,4E)-2-Azido-3-benzoyloxy-1-(2,3,4,6-tetra-O-acetyl-4-C-methyl-β-D-glucopyranosyloxy)-4-dodecene (14b).—To a solution of 10b (510 mg, 1.48 mmol) in dry n-hexane (4 mL) under an N₂ atmosphere was added diethyl ether-boron trifluoride (1.9 mL of a 0.2 M solution in dry CH₂Cl₂) and a solution of 9 (970 mg, 1.91 mmol) in dry CH₂Cl₂ (2 mL). After stirring for 30 min at room temperature, the mixture was diluted with light petroleum (30 mL) and filtered. The filtrate was washed with satd aq NaHCO₃ (20 mL), dried (MgSO₄), and concentrated under reduced pressure. Flash chromatography (8:2 light petroleum-EtOAc) of the residue yielded 14b (440 mg, 44%) as a colourless syrup, $[\alpha]_D^{22}$ -32° (c 0.64, CHCl₃), $R_{\rm F} = 0.25$ (8:2 light petroleum-ethyl acetate). ¹H NMR (250 MHz, CDCl₃): δ 0.86 (t, 3 H, J 6.8 Hz, CH₃), 1.25–1.44 (m, 10 H, 5 CH₂), 1.40 (s, 3 H, CH_3), 1.80–2.13 (m, 2 H, $CH=CH-CH_2$), 1.96, 1.99, 2.07, 2.08 (4 s, 12 H, 4 OAc), 3.61 (dd, 1 H, J 8.5, 12.0 Hz, CH₂O), 3.88–3.93 (m, 2 H, CH₂O, CHN), 4.00 (dd, 1 H, $J_{5.6a}$ 7.9, J_{gem} 11.9 Hz, H-6a), 4.25 (dd, 1 H, $J_{5.6b}$ 2.5, J_{gem} 11.9 Hz, H-6b), 4.57 (d, 1 H, $J_{1,2}$ 8.1 Hz, H-1), 4.80 (dd, 1 H, $J_{5.6b}$ 2.5, $J_{5.6a}$ 7.9 Hz, H-5), 5.00 (dd, 1 H, $J_{1,2}$ 8.1, $J_{2,3}$ 9.8 Hz, H-2), 5.50–5.65 (m, 2 H, CH=CH-CH₂, CH-OBz), 5.89 (d, 1 H, $J_{2,3}$ 9.8 Hz, H-3), 5.87–5.98 (m, 1 H, CH=CH-CH₂), 7.42–7.48 (m, 2 H, Ph), 7.54–7.61 (m, 1 H, Ph), 8.03–8.06 (m, 2 H, Ph). Anal. Calcd for $C_{34}H_{47}N_3O_{12}$ H₂O: C, 57.70; H, 6.97; N, 5.94. Found: C, 57.70; H, 6.63; N, 6.00.

(2S,3R,4E)-3-Benzoyloxy-2-hexadecanoylamino-1-(2,3,4,6-tetra-O-acetyl-4-Cmethyl-β-p-glucopyranosyloxy)-4-octadecene (15a).—A solution of 14a (1.10 g), triphenylphosphine (560 mg, 2.13 mmol), and hexadecanoic anhydride (910 mg, 1.83 mmol) in dry tetrahydrofuran (20 mL) was stirred for 48 h at room temperature. Water (0.5 mL) was added and stirring continued for 48 h at room temperature. The mixture was concentrated under reduced pressure and coevaporated with pyridine $(1 \times 30 \text{ mL})$ and toluene $(2 \times 30 \text{ mL})$. MPLC (6:4 light petroleum -EtOAc) yielded **15a** (390 mg, 21% from **10a**), $[\alpha]_D^{22} - 3^\circ$ (c 1, CHCl₃), R_E 0.15 (7:3) light petroleum-EtOAc). ¹H NMR (250 MHz, CDCl₃): δ 0.85-0.90 (m, 6 H, 2 CH_3), 1.23–1.40 (m, 46 H, 23 CH_2), 1.35 (s, 3 H, CH_3), 1.40–1.63 (m, 2 H, CH_2), 1.84, 1.94, 2.03, 2.07 (4 s, 12 H, 4 OAc), 1.93-2.22 (m, 4 H, CH=CH-C H_2 , NCO-CH₂), 3.63 (dd, 1 H, J 4.0, 9.8 Hz, CH₂O), 3.73 (dd, 1 H, J_{5,6a} 7.9, J_{gem} 11.9 Hz, H-6a), 4.07 (dd, 1 H, J 3.4, 9.7 Hz, CH₂O), 4.17 (dd, 1 H, J_{5.6b} 2.4, J_{gem} 11.9 Hz, H-6b), 4.46-4.51 (m, 1 H, CHN), 4.50 (d, 1 H, $J_{1,2}$ 8.0 Hz, H-1), 4.69 (dd, 1 H, $J_{5.6b}$ 2.4, $J_{5.6a}$ 7.9 Hz, H-5), 4.92 (dd, 1 H, $J_{1.2}$ 8.0, $J_{2.3}$ 9.8 Hz, H-2), 5.42–5.58 (m, 2 H, CH=CH-CH₂, CH-OBz), 5.78-5.93 (m, 2 H, CH=CH-CH₂, NH), 5.87 (d, 1 H, $J_{2,3}$ 9.8 Hz, H-3), 7.40–7.46 (m, 2 H, Ph), 7.55–7.58 (m, 1 H, Ph), 8.00–8.04 (m, 2 H, Ph). *Anal.* Calcd for $C_{56}H_{91}NO_{13} \cdot H_2O$; C, 66.97; H, 9.33; N, 1.39. Found: C, 67.02; H, 9.39; N, 1.44.

(2S,3R,4E)-3-Benzoyloxy-2-dodecanoylamino-1-(2,3,4,6-tetra-O-acetyl-4-C-methyl-β-D-glucopyranosyloxy)-4-dodecene (15b).—A solution of 14b (108 mg, 0.156 mmol), triphenylphosphine (60 mg, 0.228 mmol), and dodecanoic anhydride (78 mg, 0.80 mmol) in dry tetrahydrofuran (5 mL) was stirred for 36 h at room temperature. Water (0.2 mL) was added and stirring continued for 48 h at room temperature. The mixture was concentrated under reduced pressure, and coevaporated with pyridine $(1 \times 20 \text{ mL})$ and toluene $(2 \times 20 \text{ mL})$. Flash chromatography (7:3 light petroleum-EtOAc) of the residue and lyophilization from dioxane yielded 15b (71 mg, 54%) as a colourless powder, $[\alpha]_D^{22}$ +5° (c 1, CHCl₃), R_F 0.17 (7:3 light petroleum-EtOAc). ¹H NMR (250 MHz, CDCl₃): δ 0.82-0.90 (m, 6 H, 2 CH₃), 1.24–1.35 (m, 26 H, 13 CH₂), 1.36 (3 H, CH₃), 1.59 (m, 2 H, CH₂), 1.84, 1.94, 2.03, 2.06 (4 s, 12 H, 4 OAc), 1.98–2.17 (m, 4 H, CH=CH–CH₂, NCO–CH₂), 3.63 (dd, 1 H, J 3.6, 9.8 Hz, CH₂O), 3.74 (dd, 1 H, J_{5.6a} 7.9, J_{gem} 11.9 Hz, H-6a), 4.06 (dd, 1 H, J 3.6, 9.8 Hz, CH₂O), 4.17 (dd, 1 H, J_{5.6b} 2.4, J_{gem} 11.9 Hz, H-6b), 4.45-4.51 (m, 1 H, CHN), 4.50 (d, 1 H, $J_{1,2}$ 8.0 Hz, H-1), 4.69 (dd, 1 H, $J_{5.6b}$ 2.4, $J_{5.6a}$ 7.9 Hz, H-5), 4.92 (dd, 1 H, $J_{1.2}$ 8.0, $J_{2.3}$ 9.8 Hz, H-2), 5.43-5.58 (m, 2 H, CH=CH-CH₂, CH-OBz), 5.76-5.93 (m, 2 H, CH=CH-CH₂, NH), 5.87 (d, 1 H, $J_{2,3}$ 9.8 Hz, H-3), 7.40-7.46 (m, 2 H, Ph), 7.52-7.58 (m, 1 H, Ph), 8.00-8.04 (m, 2 H, Ph). Anal. Calcd for C₄₆H₇₁NO₁₃: C, 65.30; H, 8.46; N, 1.66. Found: C, 65.06; H, 8.43; N, 2.00.

(2S,3R,4E)-2-Hexadecanoylamino-1-(4-C-methyl-β-D-glucopyranosyloxy)-4-octadecen-3-ol (16a). —To a solution of 15a (245 mg, 0.252 mmol) in dry CH₂Cl₂ (4 mL) was added sodium methoxide (0.3 mL of a 1 M solution in MeOH). The mixture was refluxed for 1 h, neutralized with Amberlite IR-120 (H⁺) resin, filtered, and concentrated under reduced pressure. Chromatography (9:1 CHCl₃-MeOH) of the residue and lyophilization from dioxane yielded 16a (136 mg, 76%) as a white powder, $[\alpha]_D^{22} - 3^\circ$ (c 1, 9:1 CHCl₃-MeOH), R_F 0.49 (8:2) CHCl₃-MeOH). ¹H NMR [250 MHz, CDCl₃/CD₃OD (9:1)]: δ 0.85-0.91 (m, 6 H, 2 CH₃), 1.12 (s, 3 H, CH₃), 1.23 (m, 46 H, 23 CH₂), 1.52–1.66 (m, 2 H, CH₂), 1.98-2.03 (m, 2 H, CH=CH-C H_2), 2.15-2.21 (m, 2 H, NCO-C H_2), 3.22 (dd, 1 H, $J_{1,2}$ 7.6, $J_{2,3}$ 9.7 Hz, H-2), 3.33-3.40 (m, 1 H, CH₂O), 3.40 (d, 1 H, $J_{2,3}$ 9.7 Hz, H-3), 3.62–3.69 (m, 2 H, H-6a, CH₂O), 3.87 (dd, 1 H, $J_{5,6b}$ 3.2, J_{gem} 11.6 Hz, H-6b), 3.97-4.03 (m, 1 H, CHN), 4.09-4.15 (m, 2 H, H-5, CHO), 4.26 (d, 1 H, $J_{1,2}$ 7.6 Hz, H-1), 5.46 (dd, 1 H, J 7.2, 15.3 Hz, CH=CH-CH₂), 5.70 (dt, 1 H, J 6.5, 15.3 Hz, CH=CH-CH₂). Anal. Calcd for C₄₁H₇₉NO₈ · 2H₂O: C, 65.65; H, 11.15; N, 1.86. Found: C, 65.78; H, 11.01; N, 1.97.

(2S,3R,4E)-2-Dodecanoylamino-1-(4-C-methyl-β-D-glucopyranosyloxy)-4-dodecen-3-ol (16b).—To a solution of 15b (45 mg, 0.053 mmol) in dry CH₂Cl₂ (2 mL) was added sodium methoxide (0.15 mL of a 0.1 M solution in MeOH). After 1 h at room temperature, the mixture was neutralized with Amberlite IR-120 (H⁺) resin,

filtered, and concentrated under reduced pressure. Flash chromatography (9:1 CHCl₃–MeOH) of the residue and lyophilization from dioxane yielded **16b** (29 mg, 96%) as a colourless powder, $[\alpha]_D^{22}$ – 3° (c 1, 9:1 CHCl₃–MeOH), R_F = 0.68 (8:2 CHCl₃–MeOH). ¹H NMR [250 MHz, CDCl₃/CD₃OD (9:1)]: δ 0.85–0.90 (m, 6 H, 2 CH₃), 1.13 (s, 3 H, CH₃), 1.26–1.37 (m, 26 H, 13 CH₂), 1.59 (m, 2 H, CH₂), 1.98–2.03 (m, 2 H, CH=CH-CH₂), 2.14–2.20 (m, 2 H, NCO-CH₂), 3.22 (dd, 1 H, $J_{1,2}$ 7.8, $J_{2,3}$ 9.7 Hz, H-2), 3.33 (dd, 1 H, J 3.6, 7.8 Hz, CH₂O), 3.40 (d, 1 H, $J_{2,3}$ 9.7 Hz, H-3), 3.57–3.70 (m, 2 H, H-6a, CH₂O), 3.86 (dd, 1 H, $J_{5,6b}$ 3.6, J_{gem} 11.6 Hz, H-6b), 4.01–4.15, (m, 3 H, H-5, CHO, CHN), 4.26 (d, 1 H, $J_{1,2}$ 7.8 Hz, H-1), 5.46 (dd, 1 H, J 7.0, 15.3 Hz, CH=CH-CH₂), 5.71 (dt, 1 H, J 6.7, 15.3 Hz, CH=CH-CH₂). *Anal.* Calcd for C₃₁H₅₈NO₈ · 2H₂O: C, 61.15; H, 10.26; N, 2.30. Found: C, 61.09; H, 10.17; N, 2.38.

ACKNOWLEDGMENTS

The authors are grateful to the Bundesministerium for Forschung und Technologie (grants 0 319 068 A and 0 319 048 A) and to the Fonds der Chemischen Industrie for financial support of this work.

REFERENCES

- 1 G. Schwarzmann and K. Sandhoff, Biochemistry, 29 (1990) 10865-10871, and references therein.
- 2 R.R. Schmidt, Lecture, GDCh-Hauptversammlung, München, September 1991.
- 3 M. Plewe, K. Sandhoff, and R.R. Schmidt, J. Carbohydr. Chem., submitted; M. Plewe, Dissertation. University of Konstanz, 1991.
- 4 G. van Echten, R. Birk, G. Brenner-Weiss, R.R. Schmidt, and K. Sandhoff, J. Biol. Chem., 265 (1990) 9333-9339.
- 5 R. Birk, G. Brenner-Weiss, A. Giannis, K. Sandhoff, and R.R. Schmidt, J. Labelled Compd. Radiopharm., 29 (1991) 289-298.
- 6 N.P. Singh, A. Giannis, E. Henk, T. Kolter, K. Sandhoff, and R.R. Schmidt, J. Carbohydr. Chem., 9 (1990) 543-559.
- 7 D. Jeckel, A. Karrenbauer, R. Birk, R.R. Schmidt, and F. Wieland, FEBS Lett., 261 (1990) 155-157; A. Karrenbauer, D. Jeckel, W. Just, R. Birk, R.R. Schmidt, J.E. Rothman, and F. Wieland, Cell, 63 (1990) 259-267.
- 8 R.R. Schmidt and P. Zimmermann, Tetrahedron Lett., 27 (1986) 481-484; Angew. Chem., 98 (1986) 722-723; Angew. Chem. Int. Ed. Engl., 25 (1986) 725-726.
- 9 P. Zimmermann, R. Bommer, T. Bär, and R.R. Schmidt, J. Carbohydr. Chem., 7 (1988) 435-452.
- 10 T.D. Inch and G.J. Lewis, Carbohydr. Res., 22 (1972) 91-101.
- 11 A. Lubineau, A. Thieffry, and A. Veyrières, Carbohydr. Res., 46 (1976) 143-148.
- 12 R. Preuss, K.-H. Jung, and R.R. Schmidt, *Liebigs Ann. Chem.*, submitted; R. Preuss, Dissertation, University of Konstanz, 1990.
- 13 G. Excoffier, D. Gagnaire, and J.-P. Utille, Carbohydr. Res., 39 (1975) 368-373.
- 14 R.R. Schmidt, Angew. Chem., 98 (1986) 213-236; Angew. Chem. Int. Ed. Engl., 25 (1986) 212-235; Pure Appl. Chem., 61 (1989) 1257-1270; and references therein.
- 15 P. Zimmermann and R.R. Schmidt, Liebigs Ann. Chem., (1988) 663-667.
- 16 R. Birk, Dissertation, University of Konstanz, 1991.
- 17 K. Dax, W. Wolflohner, and H. Weidmann, *Carbohydr. Res.*, 65 (1978) 132-138.
- 18 J. Hiebl and E. Zbiral, Liebigs Ann. Chem., (1988) 765-774.
- 19 P. Zimmermann, U. Greilich, and R.R. Schmidt, Tetrahedron Lett., 31 (1990) 1849-1852.